If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2-10p+5=0
a = 1; b = -10; c = +5;
Δ = b2-4ac
Δ = -102-4·1·5
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{5}}{2*1}=\frac{10-4\sqrt{5}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{5}}{2*1}=\frac{10+4\sqrt{5}}{2} $
| 5(x-3)-3x+5=9 | | 6(x+4)=x42 | | -5x-3x+2=-8x=2 | | x-2-x+8=2-x+3 | | (2x+8)+(6x-2)=62 | | -4/5m=-5/4 | | 8w=39. | | x^2-10-7=-14 | | 6x+4=x+42 | | 6x+4=x42 | | 2(3-2x)=5x+7 | | 8x=x2–9 | | 225x2=9 | | h(-35)=11(-35)^(2)+62(-35) | | x+1=2(-2x-2) | | -3x+1=x+4 | | 2(3n+3)=7(3n+7)+1 | | 52.5=w | | 8=40-4x | | w(w-6^2)=0 | | -5/7m=1 | | 5y+3(y-8=5(y+1)-4 | | -4x+5=2(-x+1) | | -1+8(-1.3x+1)=−1+2(−4.4x+2) | | -3(2t-5)+2t=8t-4 | | 12x-85=4x+3 | | x+2x+x=107-3 | | 17/13=u/4 | | 3(x+1)=4x+4 | | 8x+5=-4+6x+15 | | -4m+10=-12m-14 | | 4x(7+)=28+12 |